The Černý Conjecture for Aperiodic Automata

نویسنده

  • Avraham Trakhtman
چکیده

A word w is called a synchronizing (recurrent, reset, directable) word of a deterministic finite automaton (DFA) if w brings all states of the automaton to some specific state; a DFA that has a synchronizing word is said to be synchronizable. Černý conjectured in 1964 that every n-state synchronizable DFA possesses a synchronizing word of length at most (n−1). We consider automata with aperiodic transition monoid (such automata are called aperiodic). We show that every synchronizable n-state aperiodic DFA has a synchronizing word of length at most n(n− 1)/2. Thus, for aperiodic automata as well as for automata accepting only star-free languages, the Černý conjecture holds true.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Černy Conjecture for Aperiodic Automata

A word w is called a synchronizing (recurrent, reset, directable) word of a deterministic finite automaton (DFA) if w brings all states of the automaton to some specific state; a DFA that has a synchronizing word is said to be synchronizable. Černý conjectured in 1964 that every n-state synchronizable DFA possesses a synchronizing word of length at most (n−1). We consider automata with aperiodi...

متن کامل

The Černý conjecture for one-cluster automata with prime length cycle

We prove the Černý conjecture for one-cluster automata with prime length cycle. Consequences are given for the hybrid Roadcoloring-Černý conjecture for digraphs with a proper cycle of prime length.

متن کامل

On Carpi and Alessandro conjecture

The well known open Černý conjecture states that each synchronizing automaton with n states has a synchronizing word of length at most (n−1) . On the other hand, the best known upper bound is cubic of n. Recently, in the paper [1] of Alessandro and Carpi, the authors introduced the new notion of strongly transitivity for automata and conjectured that this property with a help of Extension metho...

متن کامل

The Černý Conjecture and 1-Contracting Automata

A deterministic finite automaton is synchronizing if there exists a word that sends all states of the automaton to the same state. Černý conjectured in 1964 that a synchronizing automaton with n states has a synchronizing word of length at most (n− 1)2. We introduce the notion of aperiodically 1-contracting automata and prove that in these automata all subsets of the state set are reachable, so...

متن کامل

Synchronization of some DFA

A word w is called synchronizing (recurrent, reset, directable) word of deterministic finite automaton (DFA) if w brings all states of the automaton to an unique state. Černy conjectured in 1964 that every nstate synchronizable automaton possesses a synchronizing word of length at most (n− 1). The problem is still open. It will be proved that the minimal length of synchronizing word is not grea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics & Theoretical Computer Science

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2007